Hidden defects in silicon nanowires.
نویسندگان
چکیده
Recent publications have reported the presence of hexagonal phases in Si nanowires. Most of these reports were based on 'odd' diffraction patterns and HRTEM images—'odd' means that these images and diffraction patterns could not be obtained on perfect silicon crystals in the classical diamond cubic structure. We analyze the origin of these 'odd' patterns and images by studying the case of various Si nanowires grown using either Ni or Au as catalysts in combination with P or Al doping. Two models could explain the experimental results: (i) the presence of a hexagonal phase or (ii) the presence of defects that we call 'hidden' defects because they cannot be directly observed in most images. We show that in many cases one direction of observation is not sufficient to distinguish between the two models. Several directions of observations have to be used. Secondly, conventional TEM images, i.e. bright-field two-beam and dark-field images, are of great value in the identification of 'hidden' defects. In addition, slices of nanowires perpendicular to the growth axis can be very useful. In the studied nanowires no hexagonal phase with long range order is found and the 'odd' images and diffraction patterns are mostly due to planar defects causing superposition of different crystal grains. Finally, we show that in Raman experiments the defect-rich NWs can give rise to a Raman peak shifted to 504–511 cm⁻¹ with respect to the Si bulk peak at 520 cm⁻¹, indicating that Raman cannot be used to identify a hexagonal phase.
منابع مشابه
Area Effect of Reflectance in Silicon Nanowires Grown by Electroless Etching
This paper shows that the reflectance in silicon nanowires (SiNWs) can be optimized as a function of the area of silicon substrate where the nanostructure growth. SiNWs were fabricated over four different areas of silicon substrates to study the size effects using electroless etching technique. Three different etching solution concentrations of silver nitrate (AgNO3) and hydroflu...
متن کاملNanowires fine tunable fabrication by varying the concentration ratios, the etchant and the plating spices in metal-assisted chemical etching of silicon wafer.
The metal-assisted chemical etching (MACE) was used to synthesis silicon nanowires. The effect of etchant concentration, etching and chemical plating time and doping density on silicon nanowires length were investigated. It is held that the increasing of HF and H2O2 concentrations lead to etching rate increment and formation of wire-like structure. The results show that, the appropriate ratio o...
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کاملEffect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics
Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...
متن کاملDefects in silicon nanowires
Defects in silicon nanowires have been investigated using the electron spin resonance ESR method. The ESR signals consist of three features: a strong resonance at g=2.002 49, a weak line at g=2.000 48, and a broad feature at g=2.005 41. From the saturation behavior and oxidation-related and temperature dependence analysis, we ascribe that the strong resonance corresponds to the EX center and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2012